首页> 外文OA文献 >Landscape Structure Control on Soil CO\u3csub\u3e2\u3c/sub\u3e Efflux Variability in Complex Terrain: Scaling from Point Observations to Watershed Scale Fluxes
【2h】

Landscape Structure Control on Soil CO\u3csub\u3e2\u3c/sub\u3e Efflux Variability in Complex Terrain: Scaling from Point Observations to Watershed Scale Fluxes

机译:复杂地形土壤中的景观结构控制:从点观测到流域尺度通量的尺度变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigated the spatial and temporal variability of soil CO2 efflux across 62 sites of a 393-ha complex watershed of the northern Rocky Mountains. Growing season (83 day) cumulative soil CO2 efflux varied from ~300 to ~2000 g CO2 m—2, depending upon landscape position, with a median of 879.8 g CO2 m—2. Our findings revealed that highest soil CO2 efflux rates were observed in areas with persistently high soil moisture (riparian meadows), whereas lower soil CO2 efflux rates were observed on forested uplands (98% of watershed area). Furthermore, upslope accumulated area (UAA), a surrogate measure of the lateral redistribution of soil water, was positively correlated with seasonal soil CO2 efflux at all upland sites, increasing in explanatory power when sites were separated by the major aspects of the watershed (SE/NW). We used the UAA–soil CO2 efflux relationship to upscale measured CO2 efflux to the entire watershed and found watershed-scale soil CO2 efflux of 799.45 ± 151.1 g CO2 m—2 over 83 days. These estimates compared well with independent eddy covariance estimates of nighttime ecosystem respiration measured over the forest. We applied this empirical model to three synthetic watersheds with progressively reduced complexity and found that seasonal estimates of soil CO2 efflux increased by 50, 58, and 98%, demonstrating the importance of landscape structure in controlling CO2 efflux magnitude. Our study represents an empirical quantification of seasonal watershed-scale soil CO2 efflux and demonstrates that UAA (i.e., landscape position) and drainage patterns are important controls on the spatial organization of large-scale (~km2) soil CO2 efflux, particularly in semiarid, subalpine ecosystems.
机译:我们调查了落基山脉北部393公顷复杂流域中62个站点的土壤CO2排放的时空变化。生长季(83天),土壤CO2累积外排量从〜300到〜2000 g CO2 m-2不等,具体取决于景观位置,中位数为879.8 g CO2 m-2。我们的发现表明,在土壤湿度持续较高的地区(河岸草甸),土壤CO2的外排率最高,而在森林高地(流域面积的98%)上,土壤CO2的外流率较低。此外,上坡累积面积(UAA)是土壤水侧向再分配的替代指标,与所有旱地站点的季节性土壤CO2流出量呈正相关,当站点被流域的主要方面分隔时,解释力增加(SE / NW)。我们使用UAA-土壤CO2排放关系对整个分水岭进行了大规模测得的CO2排放,发现在83天中,流域尺度的土壤CO2排放为799.45±151.1 g CO2 m-2。这些估计值与在森林中测得的夜间生态系统呼吸的独立涡动协方差估计值进行了比较。我们将此经验模型应用于三个复杂程度逐渐降低的人工流域,发现土壤CO2排放量的季节性估计分别增加了50%,58%和98%,这表明景观结构在控制CO2排放量中的重要性。我们的研究代表了季节性流域尺度土壤CO2排放量的经验量化,并证明了UAA(即景观位置)和排水方式是大规模(〜km2)土壤CO2排放量空间结构的重要控制,特别是在半干旱地区,亚高山生态系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号